top of page

Publications

1. Surface organometallic chemistry: Formation of the grafted anionic cluster [HFeOs3(CO)13]-, [HFeRu3(CO)13]- and [FeCo3(CO)12]- on a hydroxylated magnesia.

A. Choplin, L. Huang, J-M. Basset,* R. Mathieu, U. Siriwardane and S. G. Shore.

Organometallics, 1986, 5, 1547.


2. Formation of Fe-Os, Fe-Ru and Fe-Co bimetallic particles by thermal

  decomposition of heteropolynuclear clusters supported on partially 

  dehydroxylated magnesia.  

  A. Choplin, L. Huang, A. Théolier, P. Gallezot and J. M. Basset.*

  J. Am. Chem. Soc., 1986, 108, 4224.


3. Surface organometallic chemistry: Evidence of disproportionation of

  Co2(CO)8 to Co2+[Co(CO)4]-2 at the surface of partially hydroxylated  

  magnesia.

  N. Homs, A. Cholin, P. Ramirez de la Piscina, L. Huang, E. Garbowski,  

  R. Sanchez-Delgado, A. Théolier and J. M. Basset.*

  Inorg. Chem., 1988, 27, 4030.


4. The reactivity of the metal-metal bond in the dimer

  [CH3C(CH2PPh2)3Rh2(m-CO)2].(CH3)2CO. Synthesis and X-ray structure of a paramagnetic dinuclear rhodium complex.

F. Cecconi, C. A. Ghilardi, S. Midollini, A. Orlandini, P. Zanello, B. T. Heaton,* 

  L. Huang, J. A. Iggo and S. Bordoni.

  J. Organomet. Chem., 1988, 353, C5.


5. Surface organometallic chemistry: Formation of the grafted dianionic cluster [Rh6(CO)15]2- upon adsorption of Rh6(CO)16 on a partially hydroxylated magnesia.

 P. Dufour, L. Huang, A. Choplin, R. Sanchez-Delgado, A. Théolier and 

J. M. Basset.*

J. Organomet. Chem., 1988, 354, 243.


6. A surface organometallic chemistry approach of the process of formation of bimetallic particles from bimetallic supported molecular clusters.

L. Huang, A. Choplin, J. M. Basset,* U. Siriwadane, S. G. Shore and R. Mathieu.

J. Mol. Catal., 1989, 56, 1.


7. Dispersion effects of cluster-derived Rh on SiO2 on ethylene hydroformylation.

L. Huang,* W. Guo, A. Liu and Y. Xu.

Chin. Chem. Lett., 1992, 3, 401.


8. Electron-donating behavior of Co and Fe in promoted Rh catalysts.

L. Huang,* A. Liu, W. Guo and Y. Xu.

  Chin. Chem. Lett., 1993, 7, 639.


9. CO chemisorption and CO-TPR in H2 stream with Rh/NaY and Rh-Zn/NaY zeolite catalysts.

Y. Xu,* A. Liu, D. Li and L. Huang.

  “New aspect of Spillover Effect in Catalysis for Development of Highly

  Active Catalysts”, ed. T.Inui, K.Fujimoto et al., Stud. Surf. Sci. Catal., 1993, 77, 253.


10. An effective organo-bimetallic Rh-Co cluster catalyst for hydroformylation.

   L. Huang,* Y. Xu and A. Liu.

   Chin. Chem. Lett., 1994, 5, 861.


11. Ethylene hydroformylation over Rh/L and Rh-Zn/L zeolite catalysts.

   Y. Dong, Y. Xu,* A. Liu, D. Li and L. Huang.

   Chin. J. Catal., 1994, 15, 207.


12. Structure characterization of Ru3(CO)12 in NaY zeolite by infrared 

   spectroscopy.

A. Liu,* L. Huang, Y. Xu, T. Shido and M. Ichikawa.

   Chin. Chem. Lett., 1994, 5, 715.


13. Enhancement of olefin hydroformylation related to supported bimetallic Rh-Co clusters.

   L. Huang,* Y. Xu, G. Pian, A. Liu and W. Zhang.

   Catal. Lett., 1994, 23, 87.


14. Study on catalysis by carbonyl cluster-derived SiO2-supported rhodium for olefin hydroformylation.

   L. Huang,* Y. Xu, W. Guo, A. Liu, D. Li and X. Guo.

   Catal. Lett., 1995, 32, 61.


15. Surface-promoted organometallic dissociation of RhCo3(CO)12 to

   monometallic rhodium and cobalt clusters.

   L. Huang.

   Bull. Soc. Chim. Belg., 1995, 104, 637.


16. Structure characterization of Ru3(CO)12 entrapped within NaY zeolite.

   A. Liu,* L. Huang, Y. Xu, T. Shido and M. Ichikawa.

   Chin. J. Catal., 1995, 16, 26.


17. Synthesis and characterization of [Ru6(CO)18]2- in NaY zeolite cages and its catalytic behavior for n-butane hydrogenolysis.

   A. Liu,* L. Huang, Y. Xu, T. Shido and M. Ichikawa.

   Chin. Chem. Lett., 1995, 6, 163.


18. IR studies on the preservation of RhCo3 clusters on the surface of SiO2.

   L. Huang.

   J. Mol. Catal. A., 1996, 112, 69.


19. IR studies on CO insertion reaction with SiO2-supported rhodium active site.

   L. Huang,* A. Liu and Y. Xu.

   Bull. Soc. Chim. Fr., 1996, 133, 471.


20. Surface behaviors of monometallic and cobalt-containing rhodium catalysts on SiO2 in relation to their catalytic properties for hydroformylation.

   L. Huang.

   Bull. Soc. Chim. Fr., 1996, 133, 359.


21. Probing the bimetallic RhCo3 cluster preserved on SiO2 after thermal

   treatment under O2 by hydroformylation.

   L. Huang* and Y. Xu.

   Catal. Lett., 1996, 40, 203.


22. IR studies of surface chemistry of rhodium in hydroformylation catalysts.

   L. Huang* and Y. Xu.

   J. Nat. Gas Chem., 1996, 5, 237.


23. Promoting effect of doped cobalt on catalysis of SiO2-supported rhodium for propylene hydroformylation.

   L. Huang* and Y. Xu.

   React. Kinet. Catal. Lett., 1997, 61, 397.


24. Surface chemistry and catalysis of SiO2-supported RhCo3(CO)12.

   L. Huang,* A. Liu and Y. Xu.

   J. Mol. Catal. A., 1997, 124, 57.


25. Formation of bimetallic RhCo3 clusters from monometallic clusters on SiO2 as probed by hydroformylation.

   L. Huang.

   J. Mol. Catal. A., 1997, 125, 47.


26. Studies on the formation of bimetallic Rh-Co clusters from monometallic rhodium and cobalt clusters.

   L. Huang* and Y. Xu.

   J. Nat. Gas Chem., 1997, 6, 188.


27. IR studies of the thermal decomposition of [Rh6(CO)16+Co4(CO)12]/SiO2:

   Evidence for the formation of RhCo3(CO)12/SiO2.

   L. Huang* and Y. Xu.

   J. Nat. Gas Chem., 1997, 6, 198.


28. SiO2-supported bimetallic cluster catalysts derived from [Rh(CO)2Cl]2 and cobalt carbonyls.

   L. Huang* and Y. Xu.

   Catal. Lett., 1998, 53, 177.


29. A highly active bimetallic supported Rh-Co hydroformylation catalyst

   prepared from RhCl3 and Co2(CO)8.

   L. Huang* and Y. Xu.

   Catal. Lett., 1998, 55, 227.


30. Studies on the preparation of bimetallic RhCo3(CO)12/SiO2 catalysts by infrared spectroscopy.

   L. Huang* and Y. Xu.

   Prog. Nat. Sci., 1999, 9, 662.


31. On the preparation of bimetallic Rh-Co hydroformylation catalysts from

   [Rh(CO)2Cl]2 and cobalt carbonyls on the surface of SiO2.

   L. Huang* and Y. Xu.

   Bull. Chem. Soc. Jpn., 1999, 72, 199.


32. Highly selective epoxidation of 1-pentene with H2O2 over TS-1.

   L. Huang,* C. W. Lee, Y. K. Park and S. E. Park.

   Bull. Kor. Chem. Soc., 1999, 20, 747.


33. Generation of H2O2 from H2 and O2 over zeolite beta containing Pd and

   heterogeneous organic compounds.

   S. E. Park,* L. Huang, C. W. Lee and J. S. Chang.

   Catal. Today, 2000, 61, 117.


34. Studies on the interaction between ruthenium and cobalt in supported catalysts in favor of hydroformylation.

   L. Huang* and Y. Xu.

   Catal. Lett., 2000, 69, 145.


35. Synergy of ruthenium and cobalt in SiO2-supported catalysts on ethylene

   hydroformylation.

   L. Huang* and Y. Xu.

   Appl. Catal. A., 2001, 205, 183.  


36. IR spectroscopic study on surface-mediated reductive carbonylation of hydrated SiO2-supported Ru(NO3)3.

   L. Huang* and Y. Xu.

   Catal. Lett., 2001, 71, 27.

   Erratum: Catal. Lett., 2001, 77, 171.


37. Surface-mediated reductive carbonylation of SiO2-supported RuCl3 and Ru(NO)(NO3)3 studied by IR spectroscopy.

   L. Huang* and Y. Xu.

   J. Mol. Catal. A., 2001, 176, 267.


38. Rh4(CO)12-derived functionalized MCM-41-tethered rhodium complexes: Preparation, characterization and catalysis for cyclohexene hydroformylation.

   L. Huang,* J. C. Wu and S. Kawi.

   J. Mol. Catal. A., 2003, 206, 371.


39. An active and stable RhH(CO)(PPh3)3-derived SiO2-tethered catalyst via a thiol ligand for cyclohexene hydroformylation.

   L.Huang* and S.Kawi.

   Catal. Lett., 2003, 90, 165.


40. [Rh(CO)2Cl]2-derived MCM-41-tethered rhodium complex catalysts via phosphine, amine and thiol ligands for cyclohexene hydroformylation.

   L.Huang* and S.Kawi.

   Bull. Soc. Chem. Jpn., 2004, 77, 295.


41. Aminated MCM-41-tethered Wilkinson’s complex: Active immobilized catalyst precursor for cyclohexene hydroformylation.

   L. Huang,* J. C. Wu and S. Kawi.

React. Kinet. Catal. Lett., 2004, 82, 65.


42. Effects of supported donor ligands on the activity and stability of tethered rhodium complex catalysts for hydroformylation.

   L. Huang* and S. Kawi.

J. Mol. Catal. A., 2004, 211, 23.

  

43. An active and stable Wilkinson’s complex-derived SiO2-tethered catalyst via an amine ligand for cyclohexene hydroformylation.

   L. Huang* and S. Kawi.

   Catal. Lett., 2004, 92, 57.


44. Catalytic studies of aminated MCM-41-tethered rhodium complexes for hydroformylation of 1-octene and styrene.

   L. Huang,* Y. He and S. Kawi.

   J. Mol. Catal. A., 2004, 213, 241.

Erratum: J. Mol. Catal. A., 2004, 219, 395.


45. Catalytic studies of aminated MCM-41-tethered rhodium complexes for 1-hexene hydroformylation.

L. Huang,* Y. He and S. Kawi.

Appl. Catal. A., 2004, 265, 247.


46. Comparative studies on the properties of new and conventional perovskite-type LaCoO3.

   L. Huang,* M. Bassir, E. Bousselham and S. Kaliaguine.

 Bull. Chem. Soc. Jpn., 2005, 78, 1450.


47. Reducibility of Co3+ in perovskite-type LaCoO3 and promotion of copper on the reduction of Co3+ in perovskite-type oxides.

L. Huang,* M. Bassir and S. Kaliaguine.

    Appl. Surf. Sci., 2005, 243, 360.


48. Extraction of cationic surfactant templates from mesoporous materials by CH3OH-modified CO2 supercritical fluid.

L. Huang,* C. Poh, S. C. Ng, K. Hidajat and S. Kawi.

   Talanta, 2005, 66, 943.


49. Preparation of supported mesoporous thin films concerning template removal  

   by supercritical fluid extraction.

   L. Huang,* C. Poh, S. C. Ng, K. Hidajat and S. Kawi.

   Langmuir, 2005, 21, 1171.


50. Preparation of M41S family mesoporous silica thin films on porous oxides.

   L. Huang,* S. Kawi, K. Hidajat and S. C. Ng.

Micropor. Mesopor. Mater., 2005, 82, 87.


51. High quality mesoporous materials prepared by supercritical fluid extraction: effect of curing treatment on their structural stability.

Z. Huang, L. Huang, S. C. Shen, C. C. Poh, K. Hidajat, S. Kawi* and S. C. Ng.

Micropor. Mesopor. Mater., 2005, 80, 157.


52. Formation of mesoporous silica thin films on oxide substrates by casting.

L. Huang,* S. Kawi, K. Hidajat and S. C. Ng.

Micropor. Mesopor. Mater., 2006, 88, 254.


53. Preparation of rodlike t-ZrO2 nanoparticles by two-step calcination of 1,12-diaminododecane-zirconia mesostructured composites.

   F. Chen,* K. Zhu, L. Huang, Y. Chen and F. Kooli.

   Mater. Res. Bull., 2006, 41, 10.


54. One-step solid-state metathesis reaction for synthesis of nanocrystalline tetragonal zirconia.

   F. Chen,* L. Huang, Z. Zhong, G. J. Gan, S. M. Kwan and F. Kooli.  

   Mater. Chem. Phys., 2006, 97, 162.


55. A novel SiO2-supported Pd metal catalyst for the Heck reaction.

   L. Huang,* Z. Wang, T. P. Ang, J. Tan and P. K. Wong.

   Catal. Lett., 2006, 112, 219.


56. Characters of perovskite-type LaCoO3 prepared by reactive grinding.

   L. Huang,* M. Bassir and S. Kaliaguine.

   Mater. Chem. Phys., 2007, 101, 259.


57. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.

   Z. Zhong,* H. Ang, C. Chong, L. Chen, L. Huang and J. Lin.

Phys. Chem. Chem. Phys., 2009, 11, 872.


58. Studies on the nature of catalysis: suppression of the catalytic activity of leached Pd by supported Pd particles during the Heck reaction.

   L. Huang,* P. K. Wong, J. Tan, T. P. Ang and Z. Wang.

   J. Phys. Chem. C, 2009, 113, 10120.


59. Effect of Pd0/SiO2 on the catalysis of leached soluble Pd during the Heck reaction.  

   L. Huang,* J. Tan and P. K. Wong.

Chimica Oggi-Chem. Today, 2010, 28, 29.


60. Carbon monoxide-free hydrogen production via low-temperature steam

reforming of ethanol over iron-promoted Rh catalyst.

   L. Chen,* C. Choong, Z. Zhong, L. Huang, T. P. Ang, L. Hong and J. Lin.

   J. Catal., 2010, 276, 197. 


61. Recent progress on the studies of the true catalyst in the Heck reaction with supported Pd particles.

   L. Huang* and P. K. Wong.

   Curr. Org. Synth., 2010, 7, 599.  


62. Conversion of cellulose to hexitols catalyzed by ionic liquid-stabilized ruthenium nanoparticles and a reversible binding agent.

Y. H. Zhu,* N. K. Zhen, L. P. Stubbs, L. Huang, S. C. Shen, E. V. Anslyn and J. A. Maguire.

 ChemSusChem, 2010, 3, 67.


63. On the roles of solid-bound ligand scavengers in the removal of Pd residues and in the distinction between homogeneous and heterogeneous catalysis.

   L. Huang,* T. P. Ang, Z. Wang, J. Tan, J. Chen and P. K. Wong. 

   Inorg. Chem., 2011, 50, 2094.


64. Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3: I. Catalytic stability, electronic properties and coking mechanism.

C. K. S. Choong, Z. Zhong, L. Huang, Z. Wang, T. P. Ang, A. Borgna, J. Lin, L. Hong and L. Chen.*

   Appl. Catal. A., 2011, 407, 145.


65. Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3: II. Acidity/basicity, water adsorption and catalytic activity.

   C. K. S. Choong, L. Huang, Z. Zhong, J. Lin, L. Hong and L. Chen.*

   Appl. Catal. A., 2011, 407, 155.

66. Heck chemistry – a highly active ligand-free metal catalyst system in situ generated from PdII supported on SiO2.

   L. Huang,* Y. Wang, Z. Wang, F. Chen, J. Tan and P. K. Wong.

   Phys. Chem., 2012, 2, 27.

67. Support and alloy effects on activity and product selectivity for ethanol steam reforming over supported nickel cobalt catalysts.

   L. Chen*, C. K. S. Choong, Z. Zhong, L. Huang, Z. Wang and J. Lin.

   Int. J. Hydrogen Energy, 2012, 37, 16321.

68. Homogeneous nature of the true catalytic species for Heck reactions with supported Pd particles.

   L. Huang* and P. K. Wong.

In Advances in Organic Synthesis, Atta-ur-Rehman Ed. vol 3, chap 4, Bentham Science Publishers, 2013, pp. 139-173.

69. Monometallic carbonyl-derived CeO2-supported Rh and Co bicomponent catalysts for CO free, high yield H2 generation from low temperature ethanol steam reforming.

   L. Huang,* C. Choong, L. Chen, Z. Wang, Z. Zhong, C. Campos-Cuerva and J. Lin.

   ChemCatChem, 2013, 5, 220.

.

70. Nature of the true catalytic species in carbon-carbon coupling reactions with heterogeneous palladium precatalysts.

   L. Huang and P. K. Wong.

In Palladium-catalyzed cross-coupling reactions - practical aspects and future developments, ch 10, A. Molnàr Ed. Wiley-VCH, 2013, pp. 387-408.

71. Suzuki chemistry – a promising ligand-free metal catalyst system in situ generated from PdII supported on MgO.

   L. Huang,* F. Chen, Y. Wang and P. K. Wong.

Phys. Chem., 2013, 3, 21.

72. Synthesis of Al-substituted MCM-41 and MCM-48 solid acids with mixed cationic-anionic surfactants as templates.

   F. Chen,* L. Huang, X. Yang and Z. Wang.

   Mater. Lett., 2013, 109, 299.    

73. Infrared evidence of a formate-intermediate mechanism over Ca-modified supports in low-temperature ethanol steam reforming.

   C. Choong, Z. Zhong, L. Huang, A. Borgna, L. Hong, L. Chen* and J. Lin.  

   ACS Catal., 2014, 4, 2359.

74. Modeling and simulation in spectroscopic study.

    L. Huang*

    Spectral Anal. Rev., 2014, 2, 7.

75. Molecular catalysis for the steam reforming of ethanol.

   J. Lin,* L. Chen,* C. K. S. Choong, Z. Zhong and L. Huang.

   SCI. CHINA Chem., 2015, 58, 60. 

76. Oxide-supported Rh catalysts for H2 generation from low-temperature ethanol steam reforming: effects of support, Rh precursor and Rh loading on catalytic performance.

   L. Huang,* C. Choong, L. Chen, Z. Wang, Z. Zhong, K, A. Chng and J. Lin.*

   RSC Adv., 2015, 5, 99461.

77. Dehydration of lactic acid to acrylic acid over lanthanum phosphate catalysts: the role of Lewis acid sites.

   Z. Guo, D. S. Theng, K. Y. Tang, L. Zhang, L. Huang, A. Borgna and C. Wang*.

   Phys. Chem. Chem. Phys., 2016, 18, 23746.


78. Selective conversion of lactic acid to acrylic acid over alkali and alkaline-earth metal co-modified NaY zeolites.

   L. Zhang, D. S. Theng, Y. Du, S. Xi, L. Huang, F. Gao, C. Wang,* L. Chen and A. Borgna*.

   Catal. Sci. Technol., 2017, 7, 6101.

79. Heterogeneity in Heck reactions with heterogeneous precatalysts.

   L. Huang*.

   Curr. Org. Chem., 2018, 22, 1022-1038.

80. In-situ generated supported potassium lactate – stable catalysis for vapor-phase dehydration of lactic acid to acrylic acid.    

   L. Huang,* D. S. Theng, L. Zhang, L. Chen, C. Wang* and A. Borgna.

   ACS Omega, 2019, 4, 8146-8166.

81. New insights into efficient catalysis for Heck reactions with fine supported Pd particles.

   L. Huang,* Z. Wang and J. Tan.  

React. Chem. Eng., 2020, 5, 921-934.

82. Stable catalysis of neutral silica-supported potassium lactate for vapour-phase 

   dehydration of lactic acid to acrylic acid – critical role of the support.

   L. Huang,* D. S. Theng, L. Zhang, L. Chen, C. Wang, F. Gao and A. Borgna.

   Dalton. Trans., 2022, 51, 15912–15932.


83. On the catalytic vapor-phase catalytic dehydration of lactic acid to acrylic

   acid: a systematic review.

   L. Huang, M. H. Wai and S. Kawi.*

   React. Chem. Eng., 2023, 8, 502–537.  


84. Liquid-Phase Dehydration of Glycerol to Acrolein with ZSM-5-based Catalysts in  

   the Presence of a Dispersing Agent

   L. Huang, B. Wang,* L. Liu and A. Borgna.

   Molecules, 2023, 28, 3316.


85. Immobilization of enzymes on polymers with upper critical solution temperature:

   new engineering of enzymes for biocatalysis.

   L. Huang,* X. Li and Z. Li.

   React. Chem. Eng., submitted.


86. Engineering of nano-sized biocatalysts with polymers with upper critical

   solution temperature.

   L. Huang.*

   Curr. Org. Chem., submitted



Publications: Publications
bottom of page